# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os import time from urllib.parse import urlparse import requests from kubernetes import client from kserve import KServeClient from kserve import constants logging.basicConfig(level=logging.INFO) KSERVE_NAMESPACE = "kserve" KSERVE_TEST_NAMESPACE = "kubeflow-user-example-com" MODEL_CLASS_NAME = "modelClass" class M2mTokenNotAvailable(Exception): pass def get_cluster_ip(name="istio-ingressgateway", namespace="istio-system"): api_instance = client.CoreV1Api(client.ApiClient()) service = api_instance.read_namespaced_service(name, namespace) if service.status.load_balancer.ingress is None: cluster_ip = service.spec.cluster_ip else: if service.status.load_balancer.ingress[0].hostname: cluster_ip = service.status.load_balancer.ingress[0].hostname else: cluster_ip = service.status.load_balancer.ingress[0].ip return os.environ.get("KSERVE_INGRESS_HOST_PORT", cluster_ip) def get_m2m_auth_token(env_name="KSERVE_M2M_TOKEN"): try: return os.environ[env_name] except KeyError: raise M2mTokenNotAvailable(env_name) def predict( service_name, input_json, protocol_version="v1", version=constants.KSERVE_V1BETA1_VERSION, model_name=None, ): with open(input_json) as json_file: data = json.load(json_file) return predict_str( service_name=service_name, input_json=json.dumps(data), protocol_version=protocol_version, version=version, model_name=model_name, ) def predict_str( service_name, input_json, protocol_version="v1", version=constants.KSERVE_V1BETA1_VERSION, model_name=None, ): kfs_client = KServeClient( config_file=os.environ.get("KUBECONFIG", "~/.kube/config") ) isvc = kfs_client.get( service_name, namespace=KSERVE_TEST_NAMESPACE, version=version, ) # temporary sleep until this is fixed https://github.com/kserve/kserve/issues/604 time.sleep(10) cluster_ip = get_cluster_ip() host = f"{service_name}.{KSERVE_TEST_NAMESPACE}.example.com" headers = { "Host": host, "Content-Type": "application/json", } try: token = get_m2m_auth_token() headers.update({"Authorization": f"Bearer {token}"}) logging.info("M2M Token Found.") except M2mTokenNotAvailable: logging.warn("M2M Token Not found, client authentication disabled.") if model_name is None: model_name = service_name url = f"http://{cluster_ip}/v1/models/{model_name}:predict" if protocol_version == "v2": url = f"http://{cluster_ip}/v2/models/{model_name}/infer" logging.info("Sending Header = %s", headers) logging.info("Sending url = %s", url) logging.info("Sending request data: %s", input_json) response = requests.post(url, input_json, headers=headers) logging.info( "Got response code %s, content %s", response.status_code, response.content ) if response.status_code == 200: preds = json.loads(response.content.decode("utf-8")) return preds else: response.raise_for_status()