Repository for dip
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tenant-catalog/kubeflow/tests/gh-actions/kserve/test_sklearn.py

60 lines
1.9 KiB

#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from kubernetes import client
from kubernetes.client import V1ResourceRequirements
from kserve import (
constants,
KServeClient,
V1beta1InferenceService,
V1beta1InferenceServiceSpec,
V1beta1PredictorSpec,
V1beta1SKLearnSpec,
)
from utils import KSERVE_TEST_NAMESPACE
from utils import predict
def test_sklearn_kserve():
service_name = "isvc-sklearn"
predictor = V1beta1PredictorSpec(
min_replicas=1,
sklearn=V1beta1SKLearnSpec(
storage_uri="gs://kfserving-examples/models/sklearn/1.0/model",
resources=V1ResourceRequirements(
requests={"cpu": "50m", "memory": "128Mi"},
limits={"cpu": "100m", "memory": "256Mi"},
),
),
)
isvc = V1beta1InferenceService(
api_version=constants.KSERVE_V1BETA1,
kind="InferenceService",
metadata=client.V1ObjectMeta(
name=service_name, namespace=KSERVE_TEST_NAMESPACE
),
spec=V1beta1InferenceServiceSpec(predictor=predictor),
)
kserve_client = KServeClient(
config_file=os.environ.get("KUBECONFIG", "~/.kube/config")
)
kserve_client.create(isvc)
kserve_client.wait_isvc_ready(service_name, namespace=KSERVE_TEST_NAMESPACE)
res = predict(service_name, "./data/iris_input.json")
assert res["predictions"] == [1, 1]
kserve_client.delete(service_name, KSERVE_TEST_NAMESPACE)